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A plausible description of traversal time was given, both in classically allowed and forbidden regions,
through a path-integral solution of the telegrapher’s equation. This analysis was applied to a simulation
based on microwave propagation in a waveguide considered as a one-dimensional system. An extension
of the analysis has been performed in order to compare the traversal (or delay) time results relative to a
beat-envelope signal with those as deduced from the distribution function of the randomized time and its
analytical continuation in imaginary time. Subsequently, in tight analogy with a step signal in an elec-
tronic circuit (zero-dimensional system), we have searched for a simulation of traversal processes in real
time, even for classically forbidden (tunneling) processes. First we have considered a finite series expan-
sion of harmonic functions of the signal in the neighborhood of its rise, and applied the above mentioned
procedure to each harmonic, implying analytical continuation in imaginary time and an arbitrary trun-
cation in the range of the signal. Then, in order to avoid these shortcomings, we have considered a

waveletlike description of the signal.

PACS number(s): 03.40.Kf, 02.50.—r

I. INTRODUCTION
TO A STOCHASTIC ANALYSIS OF TUNNELING

In the lectures delivered in 1956 at the Magnolia
Petroleum Company and Socony Mobil Oil Company,
Kac made [1], as reported by DeWitt-Morette and Foong
[2], some tantalizing remarks while presenting a path-
integral solution of the telegrapher’s equation. One of
these remarks is that Kac’s method can be thought of as
“randomizing the time” in the solutions of such an equa-
tion without dissipation, and averaging over all the possi-
ble paths. Moreover, he stated that “this amusing obser-
vation persists for all equations of this form in any num-
ber of dimensions.” Here, however, we focus attention
on the one-dimensional wave equation in connection with
the semiclassical analysis of traversal time—the time re-
quired for a particle to go from an initial to a final
position—both in classically allowed and forbidden spa-
tial regions. The latter are strictly connected to the tun-
neling processes for which the determination of the time
duration is still an open problem. We shall see that a
modeling based on the telegrapher’s equation—the basic
assumption being the analogy between (relativistic) parti-
cle motion and wave propagation—demonstrates further
capabilities of the semiclassical approaches to interpret
tunneling, making them more similar to pure quantum-
mechanical approaches [3,4]. The wavelet analysis, as
developed in connection with relativistic wave equations
[5], appears a promising tool for further developments of
the theory.

Kac’s work basically consists of demonstrating that the
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telegrapher’s equation is equivalent to a stochastic
motion of a particle, moving on a straight line with con-
stant velocity v, which suffers collisions that can reverse
its velocity with probability a At, after each step Ax, and
probability 1 —aAt of continuing in the same direction.
More specifically, let us consider the telegrapher’s equa-
tion in the form

2
_LM+2_‘7§E___:O’ (1

v? 32 p? t  Qx?
where a is a positive constant, F(x,0)=¢(x) is an “arbi-
trary” function such that (3F /9¢),-,=0, and ¢(x,?) is a
solution of the wave equation (1) without dissipation

(@ =0). The solution of Eq. (1) can be put in the form of
an average over all the possible paths

F(x,t)=1[{$(x +vS())) +{(p(x—vS(1)))],

where S (¢) is the randomized time defined by
t
S(1)= — 1 \N(D)
(1) fo( N""dr (3)

N(7) being a random variable with Poisson distribution
of intensity a, that is, the probability to be N(7)=k
(k=0,1,...)is

_arlar)®
k!

The meaning of the randomized time can be seen by
evaluating the first moment u,(¢)=F¥ of this quantity by
the average

P(N(r)=k)=e 4)
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=n={ ['(—1\N
F(1) (fo( 1) dT} (5)
or, by interchanging the average and the integration, by
o= [((—D")dr ©)
0

Now, from the definition of the average and from Eq. (4)
it follows that

® k
((_1)N(T)>= 2 (_l)ke—afr(ak'r') =e—2a-r N
k=0 :

and, by substituting into Eq. (6), we have immediately
=(4)=— T —2ary,_ — 1 —2at
t)= dr= 1— . 8
F()= [ e Mdr=——[1—e ] 8)

The average time 7 has to be interpreted as the fictitious
time it would take a particle to reach the average dis-
tance X =7 if it was always moving with the velocity v
without reversal. So the result of Eq. (8) clearly accounts
for the fact that dissipation continuously reduces the
effective speed of the motion with the distance tending to
the saturation value v/2a. By multiplying by v and in-
verting Eq. (8), we see that the average true time required
to reach the distance X =vF is given by

9)

For a—0, Eq. (9) correctly gives the classical result

Flx,0)= —;—[d)(x,t )+ é(x, —1)]e "

+ %e —“'fot[¢(x,r)+¢(x, —r)]

where I, and I, are modified Bessel functions.

In the case of a simple sinusoidal wave
¢(x,t)=sin(x —vt) we have
1lo(x,t)+d(x, —t)]=sinx cos(vt) (13)

and the integration in Eq. (12) can be done analytically
[2,8]. We obtain

F(x,t)=e ™™ cos(wt)+—5)—sin(wt) sinx , (14)

where w =(v2—a?)!/? is an effective velocity [9].

We wish to note that the previous result, Eq. (14) as
well as Eq. (13), represents a stationary wave like that we
can see in an open-end transmission line [10]. Moreover,
by substituting sinx with the initial amplitude, Eq. (14)
also gives the solution of a damped oscillator [2]. In the
latter case, when the excitation is represented by a step
function, the solution becomes [11]

F(t)=1—e @ cos(wt)+—;—sin(wt) ) (15)

Iy(a(t*—rH)V)+ e

t=X /v, while for the saturation value, X =v /2a, t tends
toward infinity. More generally, it can be demonstrated
that the solution F(x,t) of Eq. (1) can be expressed by a
quadrature

Fx,)=1[7 [$(x,r)+(x, —r)]g(t,r)dr

=1+ [ 1ot +é(x, —D)Ik(6rdr , (10)

where g(t,r) is the distribution of S(¢), while
h(t,r)=g(t,r)+g(t,—r) is the distribution of |S(z)|. The
functions h(t,r) and g(t,r) were evaluated by a Laplace-
transform analysis and they are given in Refs. [2] and [6],
respectively.

By using the distribution function g(¢,r), the result of
Eq. (8) can be obtained as

F= [ 7 rgltrdr=—-(1—¢ =) (1

and also turns out to be identical to the average of the
first passage time 7,(?) [6,7].

Returning to Eq. (10), the interest of that result lies in
the fact that if we know a solution ¢(x,?) of the wave
equation without dissipation, we can obtain the solution
of the complete equation by evaluating the integrals in
(10). In such a way F(x,t) is constituted by the superpo-
sition of two contributions: one corresponding to a
damped undistorted wave and the other, with a linear
coefficient in a, to a distorted wave [2]:

t

—%_'J)—l/zfl(a(tz—‘rz)l/z) dr, (12)

It is noteworthy that both expressions (14) and (15)
resemble the forms adopted in the wavelet analysis
[12,13], so that our approach to tunneling could be
developed in that framework as well [14]. However, be-
fore considering this aspect, we will continue discussing
in Sec. II the possibilities offered by electricdl networks in
simulating quantum tunneling. The implications of
wavelet analysis in connection with the tunneling prob-
lem will be considered in Sec. III.

II. ELECTRICAL NETWORKS
FOR TUNNELING SIMULATION

We recall that the results of a microwave simulation of
tunneling are best described by a quantum-mechanical
model, suitably translated into the electromagnetic
framework, demonstrating that quantum tunneling can
be actually simulated with these kinds of experiments
[15-17]. An interpretation of this fact can be given
along these lines. The analogy between particle motion
and electromagnetic wave propagation can be supported
on the basis of a similarity in the dispersion relations and
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of a close correspondence in the wave equations. Feyn-
man, Leighton, and Sands [18], when dealing with
waveguides, noted that the dispersion relation for a rec-
tangular waveguide is formally identical to that of a rela-
tivistic particle, provided that the proper substitutions
are made. Subsequently, a relation has been established
between the quantum relativistic motion and the
telegrapher’s equation which, if analytically continued,
results in the Dirac equation [19] and in the Schridinger
relativistic (or Klein-Gordon) equation [4]. Therefore the
telegrapher’s equation proves to be a suitable tool for
studying the propagation of an electromagnetic pulse,
which can simulate the motion of a relativistic particle.

Indeed, along these lines, it was possible to derive a
simplified model which accounts for the propagation of a
signal either above or below the cutoff frequency of the
waveguide (classically allowed or forbidden motion, re-
spectively) [3,4]. The starting point is a solution of the
telegrapher’s equation, similar to Eq. (14),

F(x,t)=e™ %

. v .
sinx cos(wt ) — —cosx sin(wt )
w

+%sinx sin(wt) | , (16)

obtained from Eq. (10) in the case of a single progressive

wave like sin(x —uvt) in the place of Eq. (13) which, as

stated before, represents a stationary wave. Interpreting

the effective velocity w=(v2—a?)!”? as the beat (or

group) velocity, a simple model was obtained according

to which the traversal time for a length X is given by
=% (17

Wy,2,3

where w, =w as defined before, while w,=(a?—v?)!/?

for a>v, and wy=(a’+|v|%)"/? for v2<0 (tunneling
case). In the latter two cases (w, ;) which arise when w is
imaginary, we must also consider imaginary time (¢t — it)
[3]. By identifying w with the group velocity v, in the
waveguide, the transposition of the model into the elec-
tromagnetic framework is immediate. The semiclassical
delay time, in the absence of dissipation, is given by
7=1/|v,|, where  is the length of the waveguide, v, for
the TEj; mode is v, =c[1—(A/2b )21'72, ¢ is the light ve-
locity, A is the free-space wavelength, and b is the width
of the rectangular waveguide. In the presence of dissipa-
tion we consider an effective velocity 7, given by

A 2 21172
v,=c|1— 55| _‘cl , V> (14812
(18)
or
2 A 271172
R=c| |5 | -1+ [EI;] ] , v<(v3+8)172

(19)

where 8=a /A. This means that the pure semiclassical

model, with a singularity at the cutoff frequency
vo=c /2b, appears modified so that the singularity is
shifted from v, to ¥,=(v3+8%)!/2, which can be con-
sidered an effective cutoff frequency. The heavy continu-
ous line in Fig. 1 represents the semiclassical model (r)
here described which, because of dissipation, shows a
shift in the cutoff frequency with respect to the nominal
one. In the same figure we report data of delay time
(solid circles) and the curve of 74 (phase-time model), as
well as data for 7, (open circles) and the relative theoreti-
cal curve. Without entering now into the details of the
several theoretical models, we can say schematically that
74 represents the real part, while 7, represents the imagi-
nary part of the traversal time, considered as a complex
quantity [4]. Upon inspection of Fig. 1, what clearly
emerges is the good agreement of the experimental re-
sults, obtained with microwave simulation, with the cor-
responding theoretical curves as deduced from quantum-
mechanical models. As for the prediction of the modified
semiclassical model, the relative curve 7, seems to be in
agreement with the absolute value of the complex traver-
sal time (75 +72)!/2 rather than with each (real or imagi-
nary) component. So, on this basis, we may conclude
that the path-integral treatment of the telegrapher’s
equation, for the presence of dissipation, makes the semi-
classical model a suitable candidate for interpreting ex-
perimental data [3]. Nevertheless, several aspects remain
unexplained, such as the fact that the dependence of the
delay time versus the barrier length is far from linear,
while the semiclassical model, as seen in Eq. (17), essen-
tially shows a linear dependence [4]. The nonlinearity of
the delay versus length [in the classically allowed region
the dependence is more than linear as predicted by Eq.
(9), while in the tunneling region we find an opposite
behavior] implies that, for sufficiently long length, the

O S I— S
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FIG. 1. Data of delay time for / =15 cm (solid circles) are to
be compared with the curve of 74 as well as data of 7, (open cir-
cles) with the relative curve. The heavy line 7, represents the
modified semiclassical model resulting from the telegrapher’s
equation with @ =0.1c¢, which implies a shift in the cutoff fre-
quency from v,~9.49 GHz to ¥,=9. 54 GHz (after Ref. [3]).
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tunneling can result in a superluminal motion [20].

As seen previously the effective (imaginary) velocity in
tunneling processes is increased by dissipation and can
actually overcome the light velocity ¢, contrary to the
classically allowed motion whereby the effective velocity
has ¢ as upper bound [compare Egs. (18) and (19)]. An
extension of the analysis for comparing results of the
traversal—or delay—time relative to a beat-envelope
signal with those as deduced from the distribution func-
tion of the randomized time [g(7,t) in Eq. (10), and its
analytical continuation in imaginary time) allowed us to
hypothesize that in tunneling processes the traversal time
is given by

t=—21;(1—e“2“"/”) , (20)

which is just the inverse function of Eq. (9) [7]. However,
this fact does not seem sufficient for explaining the ex-
treme shortening of the real delay time below the cutoff
(solid circles in Fig. 1). In other words, since there is no
phase variation of the wave inside the barrier (evanescent
waves), the pulse transit through the barrier itself seems
nearly instantaneous. Consequently, anomalous pulse de-
lays originate in microwave propagation [21].

On the basis of these considerations, it seems
worthwhile to reconsider Eq. (14) relative to a stationary
wave, rather than Eq. (16) relative to a progressive wave.
As clearly shown by Eq. (14), and even more by Eq. (13),
we are concerned with a superposition of two waves trav-
eling in opposite directions, one towards the positive x
coordinate and the other towards the negative, achievable
with a section of line with open end (reflection coefficient
equal to 1). It is well known that a section of line of
length ! with a unitary reflection coefficient is equivalent
to an electric network constituted by resonant or an-
tiresonant circuits, whose resonant frequencies are given
by [22,23]

- 1
Va 2AVIC

(n=0,1,2,...), (V3 )]

1
+_
"o

L and C being the inductance and the capacitance per
unit length, respectively. If we limit ourselves to the
neighborhood of a resonant frequency, for instance, vy, it
then appears natural to consider the behavior of a single
resonant circuit. This way of looking at tunneling simu-
lation, with a circuit where the dimension of length is
lost, can be regarded as a zero-dimensional system. This
agrees with the adoption of Eq. (14), where the spatial
dependence (sinx) is merely a factor amplitude.

Now we must analyze the temporal response of these
kinds of circuits. This can be done either by a pulse or by
a stationary analysis. Let us consider, for example, the
circuit of Fig. 2 which represents a typical stage of a
shunt-compensated amplifier. The response to a step sig--
nal can be written in our terminology as [24]

€p

_ —a,t a;
=1—e cos(w,t)+—sin(w,¢)
gnR e w,

2

sin(w,t) |, (22)

2a,w,

Ewp A To screen
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R
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FIG. 2. A shunt-compensated stage (a) and its equivalent cir-
cuit (b) (after Ref. [24]). A modified version of the circuit is ob-
tained with inclusion of the resistance R, in the capacitive
branch.

where a; =R /2L, w;=(v*—a?)"%, v=1/V'LC, with R,
L, and C the parameters of the lumped circuit (R, =0).
This expression, which closely resembles Eq. (15), can be
discussed in connection to the several cases of w (real and
imaginary). On this basis, we will recover a model which
resembles the one described in Ref. [27]. However, we
prefer to proceed first by a stationary analysis of the cir-
cuit, reconsidering the step response later. Now, we re-
port the results relative to a slightly modified version of
the same circuit, with the inclusion of a resistive element
R, in the capacitive branch as shown in Fig. 2. By a
standard analysis we find that the amplitude response in a
stationary regime is given by

2 2 1122

l—ﬁx2 +x?

K
(1—x22+x%k+K)?

1
k+K

(23)

and the dephasing by (0 is taken to be positive when the
output signal lags the input)

_ 31—k?)—x(1—K?)
0=tan~! | X 24
kx*+kK(k+K)x*+K |’ 24
where K=RVC/L, k=R,VC/L, x=w/ay

@y=1/V LC (for R, =0 we have k=0 and we recover
the expressions reported in Ref.[24]). The phase delay is
given by D, =6/w, while the group delay is given by
_de dD d

48 _ D _ —_d
# " do PO, T Dot gy Do -

The results relative to a typical case are shown in Fig. 3.

D (25)
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FIG. 3. Response of the modified circuit of Fig. 2 in a sta-
tionary regime as a deduced from Egs. (23)-(25) for K =0.8,
k=0.2,g,R=1.

We note that the group delay shows an interesting shape
which closely resembles the curve of 74 in Fig. 1, and we
can therefore argue that similar results can be obtained
using this kind of device.

Returning now to the case of a step-function signal,
Eq. (22), we wish to establish a closer correspondence
with the quantum tunneling situation. For this purpose,
we report the salient features of a treatment of the signal
according to the Sommerfeld-Brillouin procedure for a
dispersive medium [25]. The propagation of the pulse,
representative of a particle of mass m and energy E =#w,
traveling in the x direction and subjected to a potential
V,, is described by a contour integral in the complex

plane of @ as [26]
-1
vxo=g -]

where 7 is a closed path including @, and the momentum
k=#"1[2m(E—V,)]""? becomes imaginary for E <V,,.
The pulse is initially described by a function of the type

27

exp[ —i(wt —kx)] do
@ —Wg

(26)

’

S()=06(t)exp(—iawgt) ,

where O(t) is the Heaviside step function. By introduc-
ing a new variable with the position z>=w— (¥, /%), Eq.
(26) becomes

iVt
#

expli(zE—2z%t)]
Xfr JERP 2zdz , (28)

-1
WY&, t) Py exp

where £=x(2m /#)'/%, Q=#"'(E — V), and the contour
of integration I' in the z complex plane is taken according
to the steepest-descent criterion. Without entering into a
description of the analysis, we limit ourselves to summa-
rize the salient features of the results [27]. The envelope
of the wave function ¥(x,?) turns out to be shaped in a
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02 01 o0 0.1 0.2 03

v2

FIG. 4. Delay time (in arbitrary units) deduced from Egs.
(22) and (29) for different values of v2 and @, =0.1. The dashed
line represents the modified 2semiclassical model of Eq. (17)
whose peak is situated at @ =a%+a%=0.09+0.01=0.1 and
X=1

similar way to Eq. (22) for Q>0 (classically allowed re-
gion) and for ) <O (tunneling region) to the correspond-
ing expression of Eq. (22) for imaginary w, that is,

ey a,

=1—e¢ cosh(w, 3¢)+

sinh(w, 3t)
gnR e; wy 3 ’

2

v .
— ———sinh(w, 3¢)
2a,w, ; 23 ’

(29)

where w,=1"a}—v?, for a,>v, and wy=vV a’+ |3
for v? <0. By Eqgs. (22) and (29) we can evaluate the delay
time of the signal, taken as the time required to arrive at
one-half of its maximum amplitude. The results in a typi-
cal case are shown in Fig. 4, and they closely resemble
the results of Ref. [27], although the dependence on the
length is lost.

III. WAVELET ANALYSIS OF TUNNELING

The results of the preceding section can be assumed as
a starting point for analyzing the propagation of a step-
like signal according to the telegrapher’s equation (note
that in doing such we recover the dependence on the
length). Namely, we assume that the signal computed ac-
cording to Egs. (22) and (29) can be considered a solution
#(x,1?) of the wave equation (1) without dissipation. The
effect of the line dissipation, parameter a in Eq. (1), could
be considered by working out Eq. (10). This, however,
cannot be easily done directly in an analytical way: it is
at this point that we invoke the concept of wavelet for
solving our problem. As anticipated, analytical forms
like Eqgs. (14) and (15), but also Egs. (22) and (29), can be
considered as wavelets, or more precisely, coherent
states, depending on two parameters a and b, of the type

[12]
G, p(x)=G(x —b)e" ™, (30)

where G (x) is a window function—generally a Gaussian



50 KAC’S SOLUTION OF THE TELEGRAPHER’S EQUATION FOR . . . 795

function but any other physically acceptable function can
be used. The parameters a and b allow a connection to
momentum (or frequency) and position (or time), respec-
tively [28].

A first attempt to find the answer for our system to a
steplike function was made considering only the main
part of the signal, in the neighborhood of its rise, by de-
veloping it in a finite series expansion like [4]

F(t)=%+%[Alsin(wt+0,)+ Asin(3or +0,)+ -+ ] .

(31)

The coefficients 4,;  and 0,3 are determined by a
best fit of the signal already evaluated, Egs. (22) and (29),
by identifying o with w, @, (see below) with a, and 6 with
x. In such a way, we could apply the same procedure de-
scribed above [see Eq. (16)] for a single sinusoidal wave.
Then, by adding again the results as in the original ex-
pansion (31), we obtain the signal as modified by propaga-
tion in the presence of dissipation. In Fig. 5 we show the
results of this treatment in the case of a signal relating to
a classically allowed region. As expected, we note that
the effect of dissipation is to increase the rise time. When
the dissipation _exceeds the velocity (w <a, that is,
0 <wy), ©;=1 ©*— o} becomes imaginary and, as in the
case of single wave, we considered the analytic continua-
tion of Eq. (16), or (22), in imaginary time with
a)2=\/ @} —w®._Analogously, in the tunneling region we
write @;=1 0%+ 0|2 In these latter cases (@,,3), we
found that dissipation tends to reduce the arrival time of

wg=0

SIGNAL AMPLITUDE

-0.1 T T T T T |
0 16 32 48 64 80 96
t

FIG. 5. Signal envelope, in the neighborhood of the rise, for
a classically allowed motion. In the absence of dissipation
(wz=0) the signal is fitted by Eq. (31) with five harmonics. All
the sinusoidal components are then modified, according to Eq.
(16), for each value of the dissipation parameter w,, and then
recomposed in order to obtain the signal shape with dissipation.

The delay time, taken half way of the maximum amplitude, is
indicated.

the signal. So, as in the case of a beat envelope, the effect
of the dissipation is to shift the peak of the curve of the
delay time towards the high frequencies [4].

Subsequently, in the attempt to avoid entering in imag-
inary time, we have considered a different kind of expan-
sion of the signal of the type [29]

Fi=Saz!, (32)
1

where a; and z; are complex numbers and ¢ is a real quan-
tity. By Eq. (32) we can give a rather accurate descrip-
tion of the signal with a moderate number of terms
(p =3-5), avoiding the rather artificial criterion of con-
sidering an arbitrary small interval around the rise of the
signal, adopted in connection with Eq. (31), in order to
contain the number of harmonics. In spite of this, an ex-
pansion like (32) was not employed for deriving the ar-
rival time because of the difficulty in obtaining an analyti-
cal solution of the wave equation with these kinds of
functions.

Another attempt can be made searching for the solu-
tion of the telegrapher’s equation starting directly from a
¢(x,t) derived from Eq. (22), of the type (see Fig. 6)

#(x,t)~exp | —a, t—% sin(x —vt) , (33)

which satisfies the d’Alembert equation, Eq. (1) for a =0.
The importance of this form lies in the fact that it is “nat-
urally” confined, like the coherent states of Eq. (30), and
only two or three terms are sufficient in describing our
signals. The difficulty of obtaining a direct analytical

x=0
/x=1.25
5
_ AN
4/ of ! \\ 1 o<
\\ }
N (@)

FIG. 6. A “wavelet” —¢(x,?) [see Eq. (33)] propagating in
the x direction represented as a function of the time at two
different x positions. Case (a) a; =2, v=2m, case (b) a;=0.2,
v =2m.
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solution of the wave equation, starting with the form (33),
can be surmounted as follows.

Let us consider the Laplace transform of the wave
equation (1), that is [30],

2
af —Ul—z(s2+2as )+ S_‘:)'22_(_1_¢(x,0)

dx?
ii‘fi] =0, (34)
t=0

U2 at

where f(x,s) is the Laplace transform of F(x,t) which is
the solution of Eq. (1). According to Eq. (33) we have

—ax/v
#(x,0)=e “*Yinx |
_a_¢_ —a;x/v )
Fy (a,sinx —v cosx) .
t=0

We can verify that Eq. (34) is satisfied, for a, <<v, by [31]

(s +2a+a,)sinx —v cosx

st+2as +w?

—a,;x/v

flx,5)= ) (35)

where w; =1 v?—a?. By the inverse Laplace transform
of Eq. (35) we find that an approximate solution of Eq.
(1), with ¢(x,?) as Eq. (33), is given by

g —ayx/0 | . v .
F(x,t)~e % “1""|sinx cos(it ) — —cosx sin(@t )
7]
ata; .
—sinx sin(@t) | , (36)
w

where
o=V w?—a*=Vvi—at—a*=Vy2-a’. (37)

On the basis of this last result we can anticipate that
the time-delay function versus frequency should be
peaked at v2=a’ rather than at v>=a? as in the beat-
envelope model [Eq. (17)]. In Fig. 4 this is represented by
the dashed curve corresponding to the simplified model
of Eq. (17) displaced at @“. For a better description of the
delay time versus frequency, we must consider the com-

plete expression (36). We note that Eq. (36) is very simi-
lar to Eq. (16), apart from the factor e _a‘X/v, the substi-
tution of w=(v?—a?)"? with & =(w?—a?)!”?, and the
coefficient of the third term, which contains the parame-
tera,.

So, in conclusion, we can recover most of the calcula-
tions derived earlier, and in particular a detailed descrip-
tion of the delay time as a function of v? as reported in
Fig. 1 of Ref.[3]. In that case, the influence of the dis-
torted wave, the third term in Eqgs. (16) and (36), is clearly
evidenced with an enhancement of the traversal time in
the allowed region and a lowering in the tunneling one.
In such a way we can get a rough idea of the influence of
the parameter a,; over the delay time, except in the peak
region (around the effective cutoff of Fig. 1 or @2 of Fig.
4) since the approximate result of Eq. (36) holds only for
a; <<v. Further work is required in order to consider a
complete description of the input pulse like those of Egs.
(22) and (29) and the relative delay time. This, however,
overcomes the purposes of the present work devoted to
demonstrating that the wavelet concept represents a
more refined approach to the interpretation of elec-
tromagnetic simulations of tunneling in connection with
the telegrapher’s equation.

Note added. After this work was accomplished, we re-
ceived a report by Nimtz, Enders, and Spieker [32] deal-
ing with tunneling time delay in a microwave cavity. The
latter consists of a waveguide section terminated by two
subcutoff waveguides as mirrors: in such a way a standing
wave regime is set up. The measurements are performed
by varying the frequency and by crossing a cavity reso-
nance, the resulting delay shows a marked peak while,
out of the resonance, superluminal effects are observed.
So, the overall behavior strongly resembles the shape of
@oD, here shown in Fig. 3, apart from an unessential off
zero.
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